
Suppression of superconductivity inLa1:85Sr0:15Cu1�yNiyO4 : The relevance oflocal lattice distortionsDaniel Haskel�, Edward A. Sternz, Victor Polingerz and FatihDogany� Experimental Facilities Division, Advanced Photon Source, Argonne National Laboratory,Argonne IL 60439, USAz Department of Physics, Box 351560, University of Washington, Seattle WA 98195, USAy Department of Materials Science and Engineering, Box 352120, University of Washington,Seattle WA 98195, USAAbstract.The e�ect of Ni substitution upon the local structure of La1:85Sr0:15Cu1�yNiyO4is commonly neglected when addressing the Ni-induced destruction of the supercon-ducting state at y � 0:03 and a metal-insulator transition at y � 0:05. It is alsosometimes assumed that direct substitution of a dopant into the CuO2 planes hasa detrimental e�ect on superconductivity due to in-plane lattice distortions aroundthe dopants. We present here results from angular-dependent x-ray absorption �nestructure (XAFS) measurements at the Ni, La and Sr K-edges of oriented powders ofLa1:85Sr0:15Cu1�yNiyO4 with y = 0:01; 0:03;0:06. A special magnetic alignment geom-etry allowed us to measure pure ĉ and âb oriented XAFS at the Ni K-edge in identical
uorescence geometries. Both the near-edge absorption spectra (XANES) and theXAFS unequivocally show that the NiO6 octahedra are largely contracted along thec-axis, by � 0:16�A. Surprisingly, the Ni-O planar bonds and the Ni-O-Cu/Ni planarbuckling angle are nearly identical to their Cu counterparts. The NiO6 octahedralcontraction drives the macroscopic ĉ-axis contraction observed with Ni-doping. Thelocal ĉ-axis strongly 
uctuates, due to the di�erent NiO6 and CuO6 octahedral con-�gurations and the much stronger bonding of a La+3 ion than a Sr+2 ion to the O(2)apical oxygens. We discuss the relevance of these �ndings to the mechanisms of Tcsuppresion and hole-localization by Ni dopants.



INTRODUCTIONAt �rst it might seem a rather negative approach: to try to learn about super-conductivity by destroying it with Ni doping. However, the work of Pan et al.demonstrated just the opposite [1]. In their scanning tunneling microscopy (STM)experiments on Tc-suppressed Zn doped Bi2Sr2CaCu2O8 at temperatures below Tc,no quasiparticle tunneling current was obtained at zero bias for most of the STMtip locations on the cleaved BiO surface, as expected due to the presence of a su-perconducting gap. However, a zero-bias tunneling current was measured when theSTM tip was located precisely above a Zn dopant (two layers below the BiO surface)indicating a \metallic" or un-gapped state at the Zn dopant sites. By mapping thespatial extent of the Zn impurity-state away from its lattice site in di�erent direc-tions (by measuring the tunneling strength as function of tip displacement awayfrom the dopant), a d-wave like dependence was obtained, the impurity-state ex-tending the furthest along the nodes of the SC gap. This spatial dependence agreeswith theoretical predictions [2,3]. However, an additional, weaker, tunneling signalwith spatial extent that corresponds to an impurity state extending along the SCgap was also detected. It was proposed that this weaker signal is due to enhancedtunneling between layers along the Cu-O bond directions [3].It is clear that the local structure around dopants will in
uence the nature ofthe impurity states. Electronic states at the Fermi level are derived from O 2p andCu 3d atomic orbitals, which are largely a�ected by deviations in local symme-try through crystal-�eld splittings. Local distortions around dopants (and relatedchanges in local electronic structure) will a�ect the tunneling matrix elements ata dopant site, compared to that at a neighboring Cu site. It is therefore of impor-tance to obtain detailed information on the local environment of the dopants wheninterpreting information from other spectroscopies at the atomic level. It is inter-esting to note that doping Zn or Ni into the CuO2 planes of SC cuprates have verysimilar e�ects: both contract the crystallographic ĉ-axis and suppress Tc, althoughZn does the latter at a faster rate. In La1:85Sr0:15Cu1�yNiyO4 , SC is destroyed aty � 0:03 and a M-I transition takes place at y � 0:05 [4].EXPERIMENTALPowders of La1:85Sr0:15Cu1�yNiyO4 with y = 0:01; 0:03; 0:06 were obtained fromnitrates by precipitation from solution [5]. Sintering of powder compacts (� 3grams) took place at 1140�C for 24 hours. Lattice parameters were re�ned at roomtemperature using 14 Bragg re
ections of the I4=mmm space group. Supercon-ducting Tc's were obtained from zero �eld cooled magnetization curves measuredby SQUID magnetometry in a H=1 Gauss applied �eld. Figure 1 shows the resultsfrom these measurements.Angular resolved XAFS measurements were taken on magnetically aligned pow-ders. A general description of the alignment procedure is described in ref 5. This
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FIGURE 1. Room temperature lattice parameters and Tc's for La1:85Sr0:15Cu1�yNiyO4 . Thevalue of Tc at y = 0 is from Radaelli et al. [6]procedure results in powders align along their ĉ-axis but randomly oriented in theâb-plane. The main advantage of this method over the use of single crystals iscontrol over sample thickness, allowing the use of transmission geometry at the ab-sorption edges of concentrated elements. It also allows controlling the orientationof the ĉ-axis relative to the sample's surface. The latter allowed us to measurepure ĉ-axis and âb-plane orientations at the Ni K-edge in identical 
uorescencegeometries (Fig. 2). Measurements were done in 
uorescence at the Ni K-edge andtransmission at the Sr, La K-edges at beamline X11-A of the National SynchrotronLight Source using Si(111) (Ni, Sr K-edges) and Si(311) (La K-edge) double crys-tal monochromators. Ni K-edge XAFS is limited to about � 13�A�1 due to theappearance of Cu K-edge in the absorption spectra.Absorption spectra at the Ni K-edge of La1:85Sr0:15Cu1�yNiyO4 with y = 0:06are shown in Fig. 3 for both orientations of the electric �eld. Fig. 4 emphasizes thenear-edge region of the same spectra.ANALYSIS AND RESULTSData analysis was carried out with the UWXAFS analysis package [7] togetherwith theoretical standards from FEFF6 [8]. The orientation dependence of theXAFS signal was included in the FEFF6 calculation by performing the appropiateangular averaging for powder aligned along the ĉ-axis but randomly oriented inthe âb-plane. Data from both electric �eld orientations are analyzed concomitantlyby constraining the structural parameters of scattering paths that contribute inboth orientations, signi�cantly reducing the number of �tting parameters relativeto the number of independent points in the data. Coordination numbers were setto the values of the average structure determined by crystallography for undopedLa1:85Sr0:15CuO4 [6]. Figure 5 shows �t results at the Ni K-edge for both electric
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TABLE 1. Selected �t results at the Ni K-edge.Data corresponds to y = 0:06 at T=10K;S20 = 0:902 � 0:067. Di�raction results are fromRadelli et. al [6]. XAFS Di�ractionNi-O(1) 1.882(8)�A 1.88773�ANi-Cu 3.789(6)�A 3.7736�ANi-O(2) 2.250(12)�A 2.4145�ANi-Lac 4.701(16)�A 4.7604�AThe Ni-O(1) planar distance is nearly unchanged relative to the Cu-O(1) distance,although a relative expansion of the former by <� 0:01�A cannot be ruled out basedon the slightly larger Ni-Cu planar distance and the measured uncertainties. Ni-O(1)-Cu MS paths contribute to the XAFS at nearly the same distance as Ni-Cusingle scattering (SS) paths and are included in the �ts. As the O(2)-apical movestowards Ni it drags along its neighbor La atom, as seen by the � 0:06�A contractionin Ni-Lac distance. Ni-O(2)-Lac MS paths contribute at nearly the same distanceas Ni-Lac SS paths and are included in the �ts.The buckling angle � of the Ni-O(1)-Cu planar, nearly collinear, con�gurationwas determined by �tting a parameterized form of the e�ective scattering ampli-tudes of double and triple scattering paths, Fk(�), to the data. The parameteriza-tion was done by simulating the buckling angle dependence of such amplitudes inFEFF6 calculations (for a detailed description of this procedure see ref. 5). The�tted value of � = 2:5 � 3� is in agreement with the average buckling angle de-termined by di�raction, h�i = 3:61�, indicating again that the structural disorderintroduced by Ni in the CuO2 planes is small. The large uncertainty in buck-ling angle � is due to the small variation of Fk(�) for small buckling angles nearcollinearity (0 � � � 5�).Whether there is a spatial correlation between the positions of the two types ofdopants (Ni,Sr) can be determined from NiK-edge XAFS by �tting the Ni-(La/Sr)XAFS signal with varying amounts of (Sr/La) neighbors to Ni. Sr and La havevery di�erent backscattering amplitudes making plausible separating their isolatedcontributions to the XAFS. A �t to the Ni-(La/Sr) signal determines a relative Srconcentration of x = 0:048 � 0:06. For a random solution one expects x = 0:075,while if Sr avoids Ni one expects x = 0. Unfortunately the �tted value is consistentwith either one of these scenarios. However, we can de�nitely rule out a tendencyof Sr to occupy sites near Ni atoms. We note that determining the Sr-Ni correlationfrom Sr K-edge XAFS is not possible, due to the nearly identical backscatteringamplitudes of Ni and Cu atoms.Fitted values for the mean-squared disorder in selected interatomic distances atT=10, 200K together with their parameterization to an Einstein model are shownin Fig. 6. We found no evidence for a static contribution to the mean-squareddisorder in these distances. The much weaker e�ective force constant of the Ni-
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La2�xSrxCuO4 [14].It follows that if Sr likes to keep the doped-holes in its neighborhood due, e.g.,to their attraction to the Sr+2 impurity potential, and, if Ni prefers to avoid them,a correlation in Ni-Sr positions could arise. It is clear that doped holes will bescattered strongly from the potential introduced by the local distortion aroundNi. In fact doped-holes become localized with Ni-doping at y � 0:05 [4]. Ourobservation of a Ni+2, 3d8 high-spin state for Ni even at y = 0:06 indicates that thedoped holes are not localized at Ni sites. The localization of carriers at y � 0:05must occur away from Ni sites. It could be that Ni \repels" holes to preserve itshigh-spin state and associated Hund's exchange energy.An alternative explanation for the observed di�erences between Sr and La sitesis the much weaker bonding between the O(2)-apical and a Sr+2 ion comparedto a La+3 ion. The measured Sr-O(2) apical distance ( longer by � 0:1�A) is aresult of the much weaker Madelung potential felt by the negatively charged O(2)apical oxygen near a Sr ion, resulting in an equilibrium position further away fromthe Sr and closer to the CuO2 planes. Such distortion was already reported in aprevious study of La2�xSrxCuO4 [13]. When NiO6 octahedra contract and the O(2)ion is displaced towards Ni, the La+3 ions follow the O(2) displacement, due to asigni�cant degree of covalency in the La-O(2) bonding (the La-O(2) apical distance,2:35�A, is shorter than expected for a purely ionic bond). That La follows the O(2)apical is clearly seen by the measured contraction in Ni-Lac distance (table 1)and in the Ni-induced contraction of the La-(Cu/Ni)c distance (�g. 11). However,since Sr ions are weakly bound to O(2) apicals, they might not follow the O(2)apicals in their journey towards the Ni ions in the contracted NiO6 octahedra,resulting in a much smaller change in the Sr-(Cu/Ni)c distance relative to La-(Cu/Ni)c distance. A similar e�ect can also explain the behavior of La/Sr-Lacdistances. This explanation does not require a deviation from randomness in thesolid solution.Despite having a magnetic moment, Ni suppresses Tc at a similar rate (albeitsmaller) than non-magnetic Zn. Zn doping in La2�xSrxCuO4 is expected to manifesta similar ZnO6 octahedral distortion, as a �lled-shell, Zn+2 3d10 ion is also a non-Jahn-Teller ion. The very similar macroscopic ĉ-axis contraction observed for bothdopants supports this notion. It is not clear how the local distortion around Niwould contribute to pair breaking, but it is reasonable to assume that doped holeswill scatter strongly from such distorted centers. This scattering will modify thespatial distribution of hole carriers. If these hole carriers reside predominantly inthe CuO2 planes, their wavefunctions will be peaked in between Ni ions. The spatialextent of a superconducting state cannot be con�ned to a region smaller than itscoherence length, as the resulting quasi-particle localization energy would be largerthan the superconducting energy gap. It is interesting to note that Tc is completelysuppressed at 3-4 at. % Ni, where the average distance between Ni dopants in thetwo-dimensional CuO2 planes is 3:78=py = 19�22�A. This is about the size of thein-plane superconducting coherence length, �ab = 22:7�A for La1:85Sr0:15CuO4 [15].



It is then possible that superconductivity is destroyed when the doped holes areconstrained to occupy regions of the CuO2 plane in between Ni centers, which, fory � 0:04, are smaller than �ab.CONCLUSIONSNew tools are becoming available that allow imaging and spectroscopy of highTc superconductors at the atomic level. Scanning tunneling microscopy, e.g., hasalready proven to be a powerful technique for unraveling some important detailsabout the spatial symmetry and extent of impurity states around Zn dopants in ahigh Tc superconductor. Such experiments are bringing us closer to determiningthe symmetry of the superconducting order parameter. These new techniques canonly be fully exploited if a quantitative understanding of the local structure at theatomic level is available. This is particularly important for dopants, where the localstructure typically di�ers from the macroscopic structure.We have shown here that a strong lattice distortion exists around the Ni atomsin La1:85Sr0:15Cu1�yNiyO4 . This distortion manifests a large ĉ-axis contractionof the NiO6 octahedra, which propagates to higher shells of neighboring atomsalong the ĉ-axis. This has implications for the interpretation of spectroscopies thatare sensitive to spatially-inhomogeneous local ĉ-axis distortions. For example, thelocal tunneling cross sections, which depend on the local inter-layer spacing, willvary from a (Ni/Zn) dopant site to a neighboring Cu site due to the local ĉ-axis
uctuations.Enhanced scattering of the doped holes by the NiO6 octahedral distortions willlikely result in an inhomogeneous charge distribution of the doped holes, withhole-poor regions around Ni dopants. This is somewhat di�erent than the \swisscheese" model of Nachumi et al., in that it implies an inhomogeneous hole distri-bution in the normal state, leading to a spatially inhomogeneous superconductingorder parameter below Tc. The \swiss cheese" model predicts a uniform normalstate charge distribution and the e�ect of dopants is to remove superconductingpairs from the super
uid in a ��2ab region around the dopants. Superconductivityis fully suppressed when the average distance between Ni dopants is on the orderof the in-plane superconducting coherence length. This is expected if charge car-riers are con�ned to the regions in between Ni dopants, as the spatial extent of asuperconducting state cannot be con�ned to a region smaller than its coherencelength.The Sr and La environments respond di�erently to Ni doping. Although thiscould be explained as due to Ni entering the lattice away from Sr sites, a morelikely explanation involves a weak Sr-O(2) apical bond compared to a strongerLa-O(2) apical bond. The latter results in La ions \following" the O(2) apicaldistortion toward Ni ions, while the Sr ions are not much a�ected due to their weaklink to the O(2) apicals.
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